E**≣≋**₹S

Journal of the European Ceramic Society 20 (2000) 991-996

Improvements in the sintering and microwave properties of BiNbO₄ microwave ceramics by V₂O₅ addition

Wen-Cheng Tzou^a, Cheng-Fu Yang^{b,*}, Ying-Chung Chen^a, Ping-Shou Cheng^a

^aDepartment of Electronic Engineering, Chinese Air Force Academy, Kaohsiung, Taiwan, ROC ^bDepartment of Electrical Engineering, National Sun Yat-Sen University, PO Box 90277-4, Kangshan, Kaohsiung, Taiwan 82012, ROC

Received 22 April 1999; received in revised form 15 August 1999; accepted 25 August 1999

Abstract

The effects of V₂O₅ on the phase formation and the microwave dielectric properties of BiNbO₄ ceramics were investigated as a function of the amount of V₂O₅. As the amount of V₂O₅ addition increased from 0.125 to 1 wt%, the densification temperatures of BiNbO₄ ceramics decreased from 960 to 900°C. For densified BiNbO₄ ceramics, as the amount of V₂O₅ increased from 0.125 to 1 wt% V₂O₅ added, the dielectric constants decreased from 43.7 to 43.4 and the temperature coefficients (τ_f) increased from +2.8 to +19.5 ppm/°C. The quality values (*Q*) of V₂O₅-doped BiNbO₄ ceramics first increased, reached a maximum at 0.5 wt% V₂O₅, and then decreased with the further increase amount of V₂O₅ addition. The 0.5 wt%-V₂O₅-doped BiNbO₄ ceramics sintered at 960°C had the optimum microwave dielectric properties: ε_r = 43.6, τ_f = +13.8 ppm/°C, and *Q* = 3410. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: BiNbO₄; Dielectric properties; Microstructure-final; Sintering; V₂O₅

1. Introduction

Multilayer microwave devices had been investigated to miniaturize devices of band-pass filters and antenna duplexers for portable phone.1 These microwave dielectrics with low sintering temperatures were needed to cofire with low loss conductors and melting-point electrode such as silver and gold. Furthermore, these ceramics were desirable to have a high dielectric constant (ε_r), a high quality value (Q value), and a small temperature coefficient of resonant frequency ($\tau_{\rm f}$). Ba₂Ti₉O₂₀,² BaMg_{1/3}(Ta, Nb)_{2/3}O₃,^{3,4} (Zr,Sn)TiO₄,⁵ BaO–(Nd,Sm)₂O₃–TiO₂^{6,7} systems were the most common materials suitable for use in dielectric resonators at microwave frequency. These ceramics had a high dielectric constant with a low dielectric loss (or high quality value) and a low temperature coefficient. Ba2Ti9O20 required a sintering temperature of $\approx 1400^{\circ}$ C to achieve densification of the ceramics. Alkoxide hydrolysis has been used to produce (Zr,Sn)TiO₄ and BaMg_{1/3}(Ta,Nb)_{2/3}O₃, but their sintering temperature were about 1500 and 1550°C. The BaO-(Nd,Sm)₂O₃-TiO₂ system could be densified at

about 1350°C. The sintering temperatures for those microwave dielectrics were too high to use the low melting point electrode. It was imperative to lower the sintering temperature of those microwave ceramics in order to use silver and gold electrode.

In the past, low-melting-point glass additions, chemical processing, and smaller particle sizes of starting materials were three of the methods used to reduce the sintering temperature of a dielectric. Bismuth-based dielectric ceramics were known as low-fire materials and had been studied for multilayer ceramic capacitors.8 However, BiNbO₄ ceramic with practical dielectric properties at microwave frequency was only developed by Kagata et al.⁹ They used V₂O₅ and CuO to densify the BiNbO₄ ceramics, but the influences of V_2O_5 amount on the sintering and dielectric properties were not presented. In this study, the microwave dielectric based on the BiNbO₄ was chosen as the host material. We used V_2O_5 as the sintering aid to lower the sintering temperature of BiNbO₄ ceramics and to discuss the sintering and microwave dielectric properties of BiNbO₄ ceramics with different amount of V₂O₅ addition. Relationships among crystalline phase and both of the sintering temperature and amount of V₂O₅ addition were also developed.

^{*} Corresponding author.

2. Experimental procedures

Proportionate amounts of reagent-grade starting materials of Bi₂O₃ and Nb₂O₅ were mixed, according to the composition BiNbO₄, and ball-milled for 5 h with deionized water using an agate ball mill in an Al₂O₃ bottle. After drying, the reagent was ground with an agate mortar for 1 h and filtered through a 100-mesh screen. Then the powder was calcined at 800°C for 2 h. The crystal structure of calcined powder was examined using an X-ray powder diffractometer. After calcining, the BiNbO₄ ceramic powder was mixed with $0.125 \sim 1.5$ wt% V_2O_5 (-200 mesh, purity high than 99.9%) by ball milling with deionized water for ≈ 1 h. After drying, the powder was uniaxially pressed into pellets in a steel die. Typical dimensions of the pellets were 15 mm in diameter and 1.5 mm in thickness. Sintering of these pellets was carried out at temperatures between 880 and 960°C under ambient conditions for duration of 4 h. After surface published, the crystalline structures of the V₂O₅doped BiNbO₄ ceramics were investigated using X-ray diffraction patterns. X-ray diffraction patterns were taken at $2\theta = 4^{\circ}$ per min using Cu K_{α} radiation.

The densities of the sintered specimens, as a function of sintering temperature, were measured by the liquid displacement method using deionized water as the liquid (Archimedes method). To investigate the internal morphology of the samples, the sintered surfaces of the specimens were observed, using SEM. Dielectric characteristics at microwave frequency were measured by Hakki-Coleman's dielectric resonator method, as modified and improved by Courtney and Kobayashi et al.¹⁰ A cylindrically shaped resonator was positioned between two brass plates. An HP8510B network analyzer and an HP8340A sweeper were used for the microwave measurement system. The dielectric constant of a cylindrical dielectric resonator could be accurately determined by measuring the resonant frequency (5.7~6.2 GHz) of the TE_{011} mode and verified by $TE_{01\delta}$ resonant modes. The temperature change of the resonant frequency $\Delta f_0/f_0$ and temperature coefficient of resonant frequency $\tau_{\rm f}$ were defined as follows.

$$\frac{\Delta f_0}{f_0} = \frac{f_T - f_0}{f_0} \tag{1}$$

where f_T and f_0 were the resonant frequency at 85 and 0°C (ΔT), respectively.

$$\tau_{\rm f} = \frac{\Delta f_0}{f_0^* \Delta T} = . \tag{2}$$

3. Results and discussion

It was well known that in the Bi_2O_3 -Nb₂O₅ system numerous phases, e.g. $Bi_8Nb_{18}O_{57}$, $BiNbO_4$, and Bi_5Nb_3

O₁₅ coexisted. It was also reported that pure BiNbO₄ had a crystal structure similar to SbTaO₄ type below 1020°C. According to the XRD results, the Bi₂O₃-Nb₂O₅ powder after calcination leaded to the formation of the Bi₈Nb₁₈O₅₇ as major crystalline phase and consisted of α -BiNbO₄ and Bi₅Nb₃O₁₅ as minor phases [Fig. 1(a)]. When V_2O_5 was used as sintering aid, phase control was expected to be extremely important in such a system. For undoped BiNbO₄ ceramics sintered at 900°C [Fig. 1(b)], the main crystalline phase was α -BiNbO₄, the Bi₈Nb₁₈O₅₇ and Bi₅Nb₃O₁₅ phases were also residual. When 960°C was used as sintering temperature the only crystalline phase was α -BiNbO₄ [Fig. 1(c)]. For BiNbO₄ ceramics added with 0.25 wt% [Fig. 1(d)], 1 wt% [Fig. 1(e)] V_2O_5 and sintered at 900°C, the only crystalline phase was α -BiNbO₄. The Bi₈Nb₁₈O₅₇ and Bi₅Nb₃O₁₅ phases did not appear in the V₂O₅-doped BiNbO₄ ceramics. These results suggest that V_2O_5 does improve the satellite phases of Bi₈Nb₁₈O₅₇ and Bi₅Nb₃O₁₅ to form BiNbO₄ phase, and thus V_2O_5 can be used as a sintering aid of BiNbO₄ ceramics.

The density curves of the V₂O₅-doped BiNbO₄ ceramics are shown in Fig. 2. The density of undoped BiNbO₄ ceramics steadily increased from 54 to 83.6% of theoretical density (TD, TD = 7.28 ± 0.08 g/cm³, estimated from the XRD pattern of 960°C-sintered ceramics) with

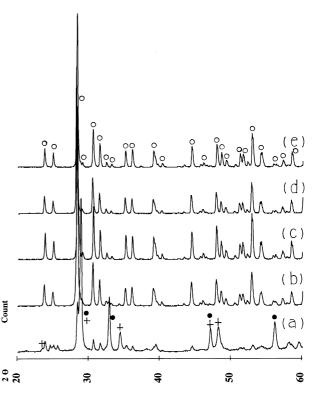


Fig. 1. The X-ray patterns for (a) $BiNbO_4$ powder calcined at $800^{\circ}C$ for 2 h; (b) and (c) undoped- $BiNbO_4$ sintered at 900 and 960°C; (d) and (e) $BiNbO_4$ sintered at 900°C with 0.25 and 1 wt% V_2O_5 addition (\bigcirc , $BiNbO_4$; \bullet , $Bi_8Nb_{18}O_{57}$; +, $Bi_5Nb_3O_{15}$).

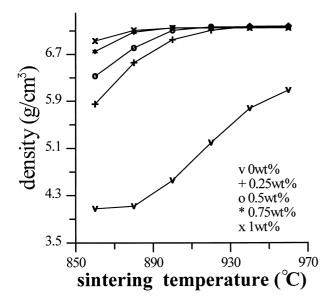


Fig. 2. The densities of $BiNbO_4$ ceramics as a function of sintering temperature and amount of V_2O_5 addition.

increasing temperature from 860 to 960°C. Even only the BiNbO₄ phase was revealed in the sintered ceramics, the BiNbO₄ ceramics were difficult to be densified without sintering aids. As V_2O_5 was added as sintering aid, the saturation densities of BiNbO₄ ceramics were obtained at a temperature decreased with the increase amount of V_2O_5 addition. For BiNbO₄ with 0.125, 0.25, and 0.5 wt% V_2O_5 addition, a bulk density over 98% of the TD were obtained with ease at 960, 940 and 920°C, respectively. As the V_2O_5 addition was in the range of 0.75~1 wt%, the BiNbO₄ ceramics could be densified at about 900°C.

Observations with SEM revealed changes in the morphology of the BiNbO₄ ceramics in the samples with different amount of V₂O₅ addition as the sintering aid. The changes in the density and grain size can be seen in the SEM photographs of selected V₂O₅-added BiNbO₄ ceramics and the results are shown in Fig. 3. With no addition of V₂O₅, isolated BiNbO₄ particles and pores were easily observed, even after sintering at 960°C (not shown here). For 0.25 wt%-V₂O₅-doped BiNbO₄ ceramics, the size of pores decreased and became less numerous than that of undoped BiNbO₄ ceramics after sintering at 920°C [Fig. 3(a)], but the pores were still residual. Further increasing the amount of V₂O₅ addition, 0.5- and 1 wt%-V₂O₅-doped BiNbO₄ ceramics [Fig. 3(b) and (c)], the homogeneously fine microstructures with almost no pores were observed. Compared the sintered surfaces of 0.5- and 1 wt%-V2O5-doped BiNbO4 ceramics, the grain size of BiNbO4 ceramics did not increase with the amount of V₂O₅ addition. The pores of all samples decreased [compare Fig. 3(a) with (d)] and the grain size of all samples increased continuously [compare Fig. 3(b) with (e) or (c) with (f)] with sintering temperatures independent of V_2O_5 amount. Using 960°C as sintering temperature, the 0.5 wt%- V_2O_5 -added BiNbO₄ ceramics revealed a larger grain size than 0.25-and 1 wt%- V_2O_5 -added BiNbO₄ ceramics did.

Fig. 4 shows the average grain size (G_0) of BiNbO₄ ceramics as a function of sintering temperature and amount of V_2O_5 addition. The temperature to present normal grain growth decreased with the increase amount of V₂O₅ addition. The temperatures for 0.25-, 0.5-, 0.75- and 1 wt%-V2O5-added BiNbO4 ceramics to reveal the normal grain growth were 940, 920, 900 and 900°C, respectively. Because the melting point of V_2O_5 is about 678°C,¹¹ more liquid phase engaged in grain growth may cause above results. At higher sintering temperature $(\geq 940^{\circ}C)$ the G_0 first increased with the amount of V₂O₅, reached a maximum at 0.5 wt% V_2O_5 addition, then decreased with the amount of V₂O₅ addition. These results suggest that too much sintering aid is not necessary. Because as the amount of V2O5 increases, the grain boundary inclusions increase and the energy necessary for the movement of a grain boundary increases, and that will cause that the grain growth decreases.¹²

The effects of V₂O₅ content on the microwave dielectric properties of BiNbO₄ ceramics sintered at different temperatures are shown in Figs. 5-7. As Fig. 5 shows, the relationships between ε_r values and sintering temperatures are shown the same trend with those between densities and sintering temperatures. The $\epsilon_{\rm r}$ values increased with the increase of sintering temperature and then reached a saturation value. Those results maybe caused by the increases of the sintered density with the sintering temperature. The saturation values were shifted to lower temperatures as the amount of V₂O₅ increased and they were decreased slightly with the increase of V₂O₅ amount. However, as V₂O₅ was used as a sintering agent, the sintering temperatures of BiNbO₄ ceramics could be reduced to 900~920°C without apparent degradation of ε_r .

The Q values of BiNbO₄ ceramics are strongly dependent on the sintering temperature and amount of V_2O_5 addition and the results are shown in Fig. 6. The Q values of BiNbO₄+x wt% V₂O₅ ceramics firstly increased with increasing sintering temperatures for all x values, the increases in densities and grain growth were the reasons to cause this result. The Q values reached a saturation value at a certain temperature dependent on the amount of V_2O_5 addition. As the amount of V₂O₅ addition was less than 0.5 wt% for all sintering temperatures, the increase in Q values was also caused by the increase in densities and grain growth [compare Fig. 3(a) and (b) or (d) and (e)]. As the sintering temperature was $\geq 900^{\circ}$ C, even the 0.5 wt%-V₂O₅-doped BiNbO₄ ceramics did not own the maximum grain size, but it revealed the maximum Q values. Kucheiko et al. reported that the Q values increased with the average grain size.¹³ Because as the grain size increased, the

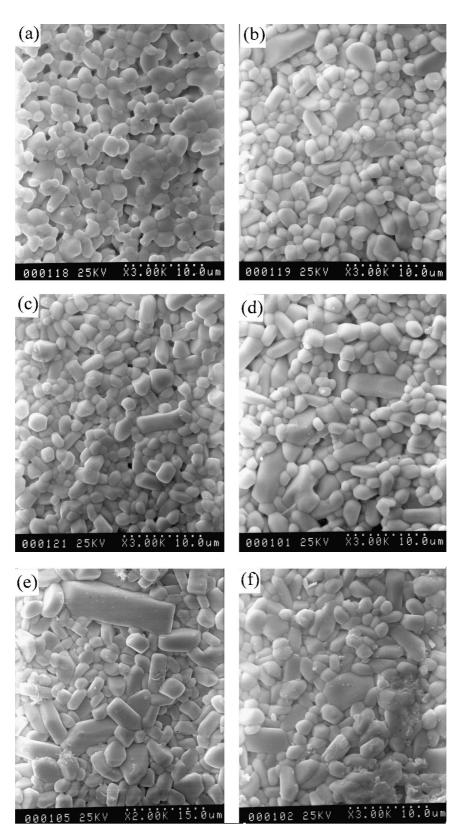


Fig. 3. The micrographs of BiNbO₄ ceramics sintered at 920°C with (a) 0.25 wt%, (b) 0.5 wt%, (c) 1 wt% V_2O_5 added and sintered at 960°C with (d) 0.25 wt%, (e) 0.5 wt%, (f) 1 wt% V_2O_5 added.

pores and grain boundary area decreased, thus reducing the lattice imperfections and increasing the Q value.¹⁴ Yang et al. reported that the tan δ ($Q = 1 \tan \delta$) increased with the increasing of sintering aid.¹⁵ Because as the sintering aid increased, the pores and the boundary inclusions increased and caused that the tan δ increased. The larger maximum Q values in 0.5 wt%-V₂O₅-doped BiNbO₄ ceramics maybe caused by the larger grain growth and the less boundary inclusions. However, such significant changes in dielectric losses were hardly explained only by the lattice imperfection or boundary defects.

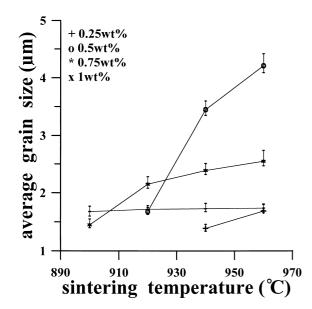


Fig. 4. The average grain size of $BiNbO_4$ ceramics as a function of sintering temperature and amount of V_2O_5 addition.

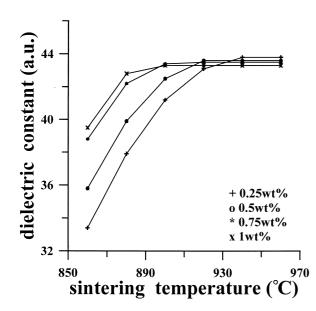


Fig. 5. The dielectric constants of $BiNbO_4$ ceramics as a function of sintering temperature and amount of V_2O_5 addition.

The V₂O₅ amounts of dependence of temperature coefficient $\tau_{\rm f}$ are shown in Fig. 7. For BiNbO₄+ *x* wt% V₂O₅ composition and sintered at 960°C, the $\tau_{\rm f}$ values changed from +2.9 ppm/°C for 0.125 wt%-doped BiNbO₄ dielectric to larger positive values with increasing *x* values. The $\tau_{\rm f}$ values for BiNbO₄ ceramics with 0.5, 0.75 and 1 wt%-V₂O₅-added were +13.8, +16 and +19.5 ppm/°C, respectively. According to the X-ray patterns, the crystalline phase of V₂O₅-doped BiNbO₄ ceramics was the low temperature phase of α -BiNbO₄. Therefore, the changes of the $\tau_{\rm f}$ values were considered to be due to the effects of V₂O₅.

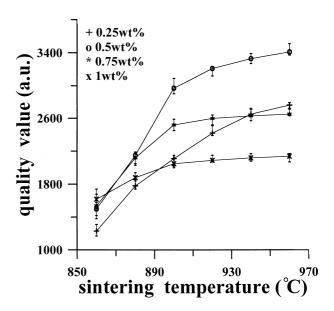


Fig. 6. The quality values (Q) of BiNbO₄ ceramics as a function of sintering temperature and amount of V₂O₅ addition.

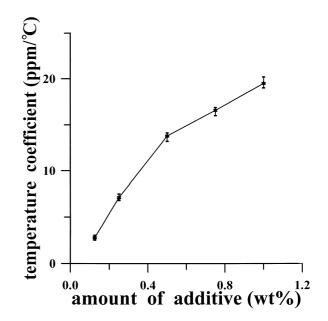


Fig. 7. The temperature coefficients of $BiNbO_4$ ceramics as a function of amount of V_2O_5 addition.

4. Conclusions

The sintering characteristics of BiNbO₄ ceramics with different amounts of V₂O₅ addition have been investigated in this study. The sintering temperatures of BiNbO₄ ceramics decrease with the increase amount of V₂O₅ addition. The temperatures revealed the saturation dielectric constants decrease with the increase amount of V₂O₅ addition. The dielectric constants of BiNbO₄ ceramics decrease with the increase amount of V₂O₅ addition. The dielectric constants of BiNbO₄ ceramics decrease slightly and the temperature coefficients of BiNbO₄ ceramics increase with the increase amount of V₂O₅ addition, but the quality values reveal a maximum at 0.5 wt%-V₂O₅-added BiNbO₄ ceramics. However, these results suggest that a large amount of V₂O₅ addition is more than 0.5 wt%, the *Q* values decrease critically and the $\tau_{\rm f}$ values reveal a larger positive value.

References

- Ishizaki, T., Fujita, M., Fujita, M., Kagata, H. and Miyake, H., A very small dielectric planar filter for portable telephones. *IEEE Trans. on Micro. Theory Technol.*, 1994, 42, 2017–2021.
- Negas, T., Yeager, G., Bell, S., Coats, N. and Minis, I., BaTi₄O₉/ Ba₂Ti₉O₂₀-based ceramics resurrected for modern microwave applications. *Am. Ceram. Soc. Bull.*, 1993, **72**, 80–89.
- Nomura, S., Toyama, K. and Kaneta, K., Ba(Mg_{1/3}Ta_{2/3})O₃ ceramics with temperature-stable high dielectric constant and low microwave loss. *Jpn J. Appl. Phy.*, 1982, **21**, L624.
- Yoon, K. H., Kim, D. P. and Kim, E. S., Effect of BaWO₄ on the microwave dielectric properties of Ba(Mg_{1/3}Ta_{2/3})O₃ ceramics. *J. Am. Ceram. Soc.*, 1994, 77, 1062–1066.

- Hirano, S. I., Hayashi, T. and Hattori, A., Chemical processing and microwave characteristics of (Zr,Sn)TiO₄ microwave dielectrics. J. Am. Ceram. Soc., 1991, 74, 1320–1324.
- Ohsato, H., Nishigaki, S. and Okuda, T., Superlattice and dielectric properties of BaO–R₂O₃–TiO₂ (R=La, Nd and Sm) microwave dielectric compounds. *Jpn J. Appl. Phys.*, 1992, **31**, 3136–3138.
- Chen, X. M., Suzuki, Y. and Sato, N., Microstructures and microwave dielectric characteristics of ceramics with the composition BaO·Nd₂O₃·5TiO₂. J. Mater. Sci. Materials in Electronics., 1995, 6, 10–16.
- Liu, D., Liu, Y., Huang, S.-Q. and Yao, X., Phase structure and dielectric properties of Bi₂O₃–ZnO–Nb₂O₅-based dielectric ceramics. J. Am. Ceram. Soc., 1993, 76, 2129–2132.
- Kagata, H., Inoue, T., Kato, J. and Kameyama, I., Low-fire bismuth-based dielectric ceramics for microwave use. *Jpn J. Appl. Phy.*, 1992, **31**, 3152–3155.
- Courtney, W. E., Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. *IEEE. Trans. MTT*, 1985, 18, 476–485.
- Levin, E. M., Robbins, C. R. and McMurdie, H. F., *Phase Diagrams for Ceramists 1969* (Supplement). The American Ceramic Society, Columbus, OH, 1969 (Fig. 2310).
- Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., *Introduction to Ceramics*. Wiley-Interscience, John Wiley & Sons, New York, 1975 (Chapter 10, pp. 461–465).
- Kucheiko, S., Choi, J. W., Kim, H. J. and Jung, H. J., Microwave dielectric properties of CaTiO₃-Ca(Al_{1/2}Ta_{1/2})O₃ ceramics. *J. Am. Ceram. Soc.*, 1996, **79**, 2739–2743.
- Sagala, D. A. and Nambu, S., Microscopic calculation of dielectric loss at microwave frequencies for complex perovskite Ba(Zn_{1/2} 2Ta_{1/2})O₃. J. Am. Ceram. Soc., 1992, **75**, 2573–2575.
- Wu, L., Yang, C. F. and Wu, T. S., The influence of sintering and annealing temperature on grain boundary barrier layer capacitors in a modified reduction-reoxidation method. *J. Mater. Sci. Materials in Electronics*, 1992, 3, 272–277.